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The Discriminant of a Quadratic Extension
of an Algebraic Field

By Theresa P. Vaughan

Abstract. Let F be an algebraic field, and K an extension of F of degree 2. We describe a
method for computing the relative discriminant D for K over F. We work out the details for
the case when F is quadratic and give tables which yield D very easily. We also apply the
method to one type of cubic field F, and give tables for it.

1. Introduction. Let F be an algebraic number field, and K an extension of F, of
degree 2 over F. We seek a “practical” method of computing the relative discrimi-
nant D of K over F.

Suppose K = F(,/y), where v is an integer in F; we write (y) for the principal
ideal generated by v in the ring R of integers of F. Put D = 2D, where D, is odd. If
p is an odd rational prime and P is a prime ideal divisor of (p) in R, we must
discover whether P divides (v) to an even or odd power. Then (Theorem 3.4) D, is
the product of all norms of such ideals P, which divide (y) to an odd power. Thus,
the difficulty of finding D, is about the same as that of factoring (y).

The determination of the integer k is rather more complicated. In Section 4, we
show the following:

(a) There is a v, in R so that y /v, is a square in F and (7,) is not contained in the
square of any prime factor of (2) in R;

(b) There is a B in R so that B2y, is congruent to a square modulo 4, and 8
satisfies certain minimality conditions:

(c) 2% divides the norm of B2y, exactly (Theorem 4.6).

In actual computation, most of the action takes place in R/(4). If [F: Q] = n,
then | R/(4) |= 4", and clearly it is desirable to have as many restrictions as possible
on the nature of a suitable 8. We address this problem in Section 5. The behavior of
the squares in R/(4) is of considerable interest, and we investigate this monoid in
Section 6.

In Section 7, we discuss the case of a quadratic field F = Q(vn'). The only case
which is not almost trivial is that of n = 1 (mod 8). In Appendix 1, we give tables for
some of the arithmetic of R/(4) in case n = 1 (mod 8); Table V of Appendix 1
summarizes the results for all n. With the aid of these tables, one can easily find the
relative discriminant; the only computational difficulty lies in finding and factoring
the norm of vy. For specific examples, we work out relative discriminants for a list of
fields given by D. Shanks in [2].
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In Section 8, we give a partial discussion of the case when F is a cubic field. The
monoid of squares in R/(4) is completely determined (up to isomorphism) by the
factorization of (2) in R; we give tables for these monoids in Appendix 2. We work
out the details for the field F = Q(«) where a is a root of x*> + 2x% + 1. (Here we
have (2) = PQ; this type is of moderate difficulty; the worst case is when (2) splits.)
Note that if g(x) € Z[x] and g(x) is irreducible and congruent to x> + 2x2 + 1
(mod 4), then all the work done for Q(«) carries over, mutatis mutandis, to Q(8)
where B is a root of g(x).

In a later paper we hope to complete the work begun in Section 8, and give a
complete discussion of all the types of cubic fields.

2. Preliminaries. Let F = Q(«) be an extension of Q of degree n, where « is a root
of an irreducible monic polynomial with integer coefficients,

f(x)=ay+ax+a,x*+ - +x".
The conjugates of a are the roots of f(x) in C; we denote these by a” (i = 1,2,...,n).

The trace and norm of « are defined by

n n

Tr(a) = X a;  N(a) =[] a«®,
=1 i=1
and one has Tr(a) = —a,_, and N(a) = (— 1)"a,,.

All of the following material may be found, in one form or another, in [1].

Let R be the ring of algebraic integers in F. Let @ = {a,, a,,...,a,} be a basis for
Fover Q, witha, € R (i = 1,2,...,n), and let 4 be the matrix whose (i, j) entry is
alt),

’ Then the discriminant of @ is disc @ =| A |>. If @ is an integral basis for R, then
disc @ = disc R, and otherwise, disc @ = k2disc R where k € Z, k > 1.

Now let K be a quadratic extension of F, and let S be the ring of integers in K.
Then for some y in F, with y not a square in F, we have K = F(/y). Evidently, one
may assume without loss of generality, that y € R.

Suppose that e = (8 + 8vy)/j € S, where B,8 € R and j € Z. Define the set B
by

B = {a), ay,...,0a,, €a,, €ay,...,ea,}.

2.1. LEMMA. With all notation as above, if {a,, a,,...,a,} is an integral basis for R,
then

2n
disc B = (disc R)*- (%) -N(8%y).

Proof. See [1, p. 43]. O

Finally, we use the following notation. If p, » € Z and p is prime, then p’|l n
means that p’| n and p"*'} n. If B € R, then (B) is the principal ideal generated by
B. If P is a prime ideal in R, then P'||(B) means that 8 € P’ and 8 & P'*'.

3. A Reduction Process. Define the equivalence relation ~ on F* by y, ~ v, if and
only if y, -y, ' is a square in F. Let [y] denote the equivalence class of v.

3.1. Definition. Let y € F* and suppose p is a rational prime. Then there exists
some v, € [v] satisfying:

(@) v, ER,
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() p Il N(v)) (1= 0,1 € Z), ‘
© Ify, €[y] N R and if p° Il N(v,), then f <.
Such a v, is said to be reduced relative to p.

3.2. LEMMA. Let y € R, and let p be a rational prime, where {P;: i = 1,2,...,k} is
the set of the prime ideal divisors of (p) in R. Then for any i = 1,2,...,k, y € P2 if
and only if there exists some k € Z with (k, p) = 1, and some 8§ € R such that
P, |1 (8), and P;}(8) if i # j, such that

k*y = 8%y,
for some v, in R.

Proof. Fix i, and put P = P,. Choose § as described above. Then there exists e € R
so that 8¢ = pk, where kK € Z and (k, p) = 1 (¢ is in the conjugate of P). Then, if
vy € P?, we have

2y = pt-vy,

for some v, in R, and hence, multiplying both sides by 8, we have k*y = §2-y, as
required. The converse is obvious. O

3.3. LEMMA. Let vy and p be as in Lemma 3.2. Then v is reduced relative to p if and
only ify & P*(i=1,2,...,k).

Proof. Suppose first that y € P? for some i. Then by Lemma 3.2 we have
k%y = 8y, where (k, p) =1, P11(8), and P,}(8) if i+ j. Then y~y,, and if
p“ |l N(y) and p® || N(¥,), clearly v < u. Then v is not reduced relative to p.

On the other hand, suppose y & P? for any i, and y ~ y, where v, is reduced
relative to p. By the above, we know y, & P? for any i, and we also have a?y = 82y,
for some @, 8 € R. Then P?"*!||(a?y) is possible if and only if P,|l(y); since
a’y = B2y,, we have P,||(y) if and only if P,|[(y,). Then N(y) and N(y,) are
divisible by exactly the same power of p, and so by definition, since v, is reduced
relative to p, so is y. O

If p is an odd prime, the situation is easily described.

3.4. THEOREM. Let p be an odd prime and y € F, where v is not a square in F, and v
is reduced relative to p. Suppose that p'|| disc R and p* || N(y). Then p*'** || disc S.

Proof. Since p > 2, we need only show that if a, 8 € R, then (a« + B/¥)/p & S
unless (p)|(«) and (p)|(B) (Lemma 1.1). Thus suppose that (a + B/y) = pe for
some ¢ € S. Then also (a« — B/¥) = pe, for some ¢, € S. Since 2a = p(e + ¢) and
p is odd, then (p)|(a). Then a®> — B2y € (p?) implies that B>y € (p?). But since y
is reduced relative to p, () is not divisible by the square of any prime factor of ( p).
Then ( p)|(B) also. The result follows from Lemma 1.1. O

4. The Case p = 2. Not surprisingly, this case requires special treatment, begin-
ning with another definition.

4.1. Definition. Let y € R be reduced relative to 2, and not square in F. Choose
B € R as follows:

(i) For some a € R, a* — B2y = 0 (mod 4).

(i) 2' Il N(B>v).
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(iii) If &, 8 € R and if ¢* — 8%y =0 (mod 4) and if 2° || N(8%y), then 7 < s.
We say that such a 82 is a match for y.

This section is devoted to proving that 2|l (disc S)/(disc R)>. We assume
throughout the rest of the paper that

(2) = POPs2 -+ - P

r

in R, where the P, are prime ideals.

4.2. LEMMA. (a) Let a, B € R. Then o* = B2 (mod 4) if and only if « = B (mod 2).

(b) Suppose PP || (a) and PP || (B) for i = 1,2,...,r, and let k be a positive integer.
Suppose that 0 < a,, b, < ke, for i = 1,2,...,r. Then a = B (mod 2¥) implies a, = b,
fori=1,...,r

Proof. (a) Let a®> — B2 = 4¢ for some ¢ in R. If P#|[(a — B) and P/l (a + B),
then a + b = 2e,; and hence (say) a = e,. Since « — B = a + f (mod 2), then also
b = e,, and we have a = B (mod 2). The converse is obvious.

(b) Put 8 = a« — B, and suppose that, for some i, a; < b, < ke;. Then § € P —
P&+, and since a, < ke;, then 8 & (2*), a contradiction. O

4.3. LEMMA. Let a, B,y € R. Then (a = B\/¥)/2 € S if and only if (a* — B%y)/4
ER. ‘

Proof. First suppose that > — 82y = 4¢ in R. Then in S, we have By = (B/¥)
= B2, and then &> — B2 =0 (mod4) in S implies « =+ B, (mod2) in S, by Lemma
42. Thatis, (a = B,7)/2 € S.

Conversely, if (a = B/Y)/2 € S, then the conjugate (a + By)/2 is also in S.
Then the product (a®> — B%y)/4 is in S. But this product is in F, so it is in R. O

4.4. LEMMA. Let y be reduced relative to 2, and suppose for some a, B in R we have
(a +B/Y)/2 in S. Then (a + B/y)/4 is not in S unless a = 2a, and B =28, for
some ay, B, in R.

Proof. Suppose (« + B/¥)/4 € S. Then also the conjugate (a — BH)/4 €S, so
a/2 € S. Since a/2 € F, this gives « = 2a, for some @; € R. Suppose next that
B/2 & R. That is

(B)=PoPy---PX  (0<b,i=1,2,...,r),
where X is an ideal of odd norm, and for at least one i, b, < e,. Since v is reduced
relative to 2, we know that P# || (y), where g, =0 or 1, for i = 1,2,...,r. Then we
have P2*%& || (B?y) where for at least one i, b, <e, and 2b, + g; <2e, Hence
(B%y) Z(4), that is B2y/4 & R. But now, we can write (2a, + B/¥)/2 € S, which

gives By /2 € S and B*y/4 € R, a contradiction. Thus we must have 8 = 28,.
d

4.5. LEMMA. Let s € R, and suppose that P?'||(s) (i = 1,...,r). Choose B, € P; so
that: P,||(B,) and P +(B,) if i # j; fori = 1,2,...,r. Then
(a) There exists x in R with odd norm, such that
s = xBBs2 - - - B (mod 4).
(b) There exists s’ in R such that s = s’ (mod 2), and y in R with odd norm, such that
s = yB"l Uz ... 'Br"r,

where u, = min(s,, e,) for i = 1,2,...,r
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Proof. (a) For each B,, we can find 8, € R so that 8,8, = 2m,, where m, is an odd
rational integer. Since m, = + 1 (mod 4), (a) follows from successive applications of
the process described in Lemma 3.2. To see (b), use the expression from (a). If
s,<e,thenu =s;:if s, > e, ¢ = B’ + 2 has P (¢), P;|(¢,) if i #j, and by (a)
we can write g; = 'x; (mod 4), where x; is some integer of odd norm. Substituting ¢,
in the expression from (a), for all i for which e, < s,, we get (b).

At last, we are in a position to prove:

4.6. THEOREM. Suppose that vy is reduced relative to 2, that v is not square in F, and
that B? is a match for vy, with 2' || N(B%Y). Then 2'| (disc S)/(disc R)?.

Proof. There is some « in R so that a> — 82y =0 (mod 4), so by Lemma 4.3,
(e + B/¥)/2 is in S. Using the notation of Lemma 1.1 with j =2, we have
disc % = (disc R)? N(B2v). The result will follow if we can show that, for all u, s in
R, if X=(u+s(a+ B¥)/2)/2 is in S, then u = 2u, and s = 25, in R. Thus
suppose that X € S. By Lemma 4.5(b) it is clear we may assume that, if for any
i=1,2,...,r we have P/ || (B), thenj < e, or if P/ || (s) thenj < e,. Since

X =(Qu+sa)+sBfy)/4 €S,
it follows from Lemma 4.4 that s« = 2«, and sB = 2, for some a,, B, in R.
Suppose that P || (s) and P’ || (B), with s, <e,, b,<e,, for i = 1,2,---,r. Then
sB = 28, implies that b, + 5, = e, (i = 1,2,...,r); or
s;=e,—b+w, (0<w<Vb,).

So we have P || (8,).
Next, from Lemma 4.3, we get

(u+ a1)2 — B2y =0 (mod4);

say 2° |l N(B}y). If any of the w, were less than b,, we would have v < ¢, contradict-
ing the choice of B. Thus every w, = b;, and then every s, = e,, so that s = 2s, for
some s, in R. Now also we have 2u/4 in S, that is, u = 2u,, and this completes the
proof. O

5. Some Refinements. As it stands, Theorem 4.6 does not look very useful, since
the squares in R fall in 2” congruence classes (mod4) and 2" is rather a large
number. In this section we give some conditions that a« and 8 must satisfy in order
that a®> — 8%y = 0 (mod 4).

5.1. THEOREM. Suppose that vy is reduced relative to 2, and that a* — B*y =0
(mod 4), and that we have

Poll(a), P2N(B), PENI(Y)  (i=1,2,...,r).

(a) We may assume that 0 < a,, b, < e,.

(b) Fori=1,2,...,r,a,=b;, and if g, = 1, then a, = b, = e,.
Proof. Part (a) follows from Lemma 4.5(b), and (b) from (a) and Lemma 4.2(b).
a

5.2. LEMMA. Suppose that «,f are in R and that P | (a) and P# || (B) for
i=1,2,...,r. Then there exists some x € R with odd norm, such that o*> = x?- 8*
(mod 4).
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Proof. Lemma 4.2(a) and Lemma 4.5(b). O

5.3. COROLLARY. Let a, B, v be as usual. Then a* — B*y = 0 (mod 4) if and only if
there exist x, y in R, both having odd norm, such that

(i) B*(x* — y) = 0 (mod 4),

(i) @*(1 — y?y) =0 (mod4). O

5.4. THEOREM. Let y be reduced relative to 2, and suppose that B* is a match for v,
with a* — B%y = 0 (mod 4). Suppose that «, and B, in R also satisfy a} — Bty =0
(mod 4). Finally suppose that

PP (B) and P&I(B,)) (i=1,2,...,r).

Then fori = 1,2,...,r,0<b,<c,

Proof. We use Theorem 4.6. The basis % defined there is not necessarily an
integral basis for S, but we do have that (disc $%)/(disc S) is an odd integer. Then,
putting e = (a + B/¥)/2, every integer in S can be written in the form (u + ve)/m,
where u, v are in R and m is an odd rational integer.

By Lemma 4.3, we have (a, + 8,/¥)/2in S, and thus, for some u, v in R and odd
min Z, we can write

u+ove= m(oz1 + ,81\/}7)/2,
and hence ma, = 2u + va and mB, = vB. Since m is odd, we are done. |

5.5. COROLLARY. (i) Let y be reduced relative to 2 and suppose that a?—B3y=0
(mod 4) for some a, B in R. Then B =0 (mod2) unless there exists x in R with odd
norm so that

x2—y =0 (mod PP} - - p2ar)

for some integers a, satisfying0 < a,<e,(i=1,...,r).
(ii) If the condition of (i) is satisfied, and if B} is a match for vy, with PP || (B,)
(i=12,...,r),then0<b,<e,—a,(i=12,...,r). O

Remarks. We shall see later that the number N of squares of odd norm,
incongruent modulo 4, varies inversely with the number of prime factors of (2) in R.
The amount of work we have to do to find a match for some y depends on N
(Corollary 5.3) and on the number of factors of (2) (Corollary 5.5). The most
manageable cases are those with N small and r close to n, or with (y) having many
of the prime factors of (2) as divisors (Theorem 5.1).

6. The Square-Classes (mod 4) in R. Our purpose here is to find out more about
the nature of the squares (mod4) in R, with particular attention to those of odd
norm. A square-class Cis defined by

C=0C(x?) = {a ER: a =x*(mod4)}.

Let M be the set of all square-classes in R. The obvious multiplication, C(x*)C(»?)
= @(x%y?), makes M a monoid, with identity C(1); by Lemma 4.2 we have
| M |= 2". Many of the results of previous sections can be restated as properties of
M and we list these without proof.
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Let U be the set of invertible elements in M. That is,
U= {C(x?): N(x)isodd}.
Evidently, U is a group.

Choose B; € P, so that P, || (f;) and P;t(B;) if i # j. Then each product of the
form

6= Hﬁi’l (Ogtigei)
=1

14

gives rise to a square class C(82), and these classes are distinct. Let D be the set of
all these classes. Then

6.1. THEOREM. Let G be any square-class. Then there exist x,8 in R so that
C(x?) € U and C(8?) € D and C = C(x*)C(8?). (We shall say that C is associated
with the r-tuple (1, t,,...,t,).)

We define two sets for every square-class in M:
U(C) = {€(x?): N(x) is odd and C(x?)C = C},
F(C) = {C(x?)C: N(x) is odd}.

6.2. LEMMA. Suppose that C, and C, in M are associated to the same r-tuple
(t15---51,). Then C, € F(C,).

6.3. THEOREM. Let y be reduced relative to 2, and suppose B? is a match for y. Then
there exists o in R such that «* — B%*y = 0 (mod 4), and C(a?) € F(C(B?)).

6.4. THEOREM. (a) For every Cin M, U(C) is a subgroup of U. (b) If C, € F(C),
then U(C,) = U(C). (c) If C, is associated to (1, t,,...,t,) and C, to (s,,...,s,), and
ift,s, +ty5, + -+ +1,5, =0, then UC)) N U(C,) = {C(1)}.

Proof. Parts (a) and (b) follow directly. To see (c), choose ¢? € C, and a3 € C,,
and suppose C(x?) € U(C,) N U(C,). Then x%a? € C, and xa € C,, so we have
x%? = a? (mod4), x%3 = al(mod4),
a}(1 — x2) =0 (mod4), a3(1 —x?) =0 (mod4),

I Pf"")z) and (l—xz)EO(mod(.IrI p,.er—s')2 .

i=1 i=1

(1—-x*)=0 (mod(

Since 3 ¢;5, = 0, it follows that (1 — x*) =0 (mod P?*) for all i = 1,2,...,r. Then
(1 — x?) =0 (mod4) and C(x2) = C(1).

6.5. THEOREM. If | U|= m, and | U(C) | = k, then | F(C) |= m/k. We also have
2IF(C)|=2"
e
where the sum is taken over C such that the sets F(C) are mutually disjoint.

The cardinality of U is the number of units in the ring R /(2) (Lemma 4.2); in case
R = Z /( f(x)) (more or less), this number was given by Dedekind. We provide here
the slight generalization to any R.



692 THERESA P. VAUGHAN

6.6. Definition. If I is an ideal in R, put || I|| =| R/I |, and let ¢(/) be the number
of units in R/1I.

6.7. THEOREM. ¢: I — ¢([I) is a multiplicative function from the set of ideals in R to
Z; that is, if I, and I, are relatively prime, then ¢(I,1,) = ¢(1,)$(1,).

Proof. We can write
I=P}--- Pk,

where the P, are prime ideals in R. Then

k
R/T=ED R/P’
i=1
and u is a unit in R/ if and only if, under the isomorphism above, U corresponds to
some (uy, Uy,...,u,) where u, is a unit in R/P (i = 1,2,...,k). O

6.8. THEOREM. If P is a prime ideal in R, and r is a positive integer, then

o(r) =1l 1 = 157 )

Proof. The chain R D P D_P2 D --- projects naturally to R = R/P’, giving the
chainRD P D P?D ---D P! D P"= {0} (where P is the unique maximal ideal
of R). Then we have

R =|R/P|-|P/P?-|P?/P?|--- =|P[,

= = = —H = r—1

P=|p/P?|-|P?/P|--- =[P .
Since_ﬁ is the unique maximal ideal of R, then u is a unit in R if and only if
u € R — P. Thus the number of units is | P||” — || P|I"~", as required. O

6.9. COROLLARY. Let (2) = P{'--- P, where P, is a prime ideal of degree f,
(i=1,...,r). Then

r

|Ul=¢(@) =2" ] 1 —27).

1=1
7. Quadratic Fields. We use the same notation as before, and in addition
m = (disc S )/ (disc R)’.

We have K = F(/y), where y is a nonsquare in R; we wish to compute m. In
practice, one is often faced with a y which is not reduced relative to one or more
primes; to find the power of prime p dividing m, we need to know something about
reduced forms of y, relative to p. It is not necessary, in general, to find such a form
explicitly, as our examples show. Indeed, for odd primes, all we need is the prime
ideal factorization of the principal ideal (y) (Lemma 3.3; Theorem 3.4). If p = 2,
however, it is also necessary to work with the arithmetic of R/(4). In this section, we
work out the details for the case of a quadratic field F = Q(YZ), together with an
assortment of specific examples borrowed from a paper of Shanks [2]. The results are
summarized in Table V of Appendix 1.

Let F = Q(/Z), where Z is a squarefree integer. An integral basis for Ris {1, w},
where w = VZ if Z=2,3 (mod4) and w = (1 + VZ)/2 if Z = 1 (mod 4). We shall
denote a + bw by (a, b).
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7.1. Case 1. Let Z =2 (mod 4). An integral basis for R is {1,VZ }, and (2) = P>.
If y=a+ b/Z, we can write y = 2%(c + dyZ) where either ¢ or d is odd;
¥, = ¢ + &/Z is reduced relative to 2, and y ~ y,. We have | U|= 2 and the “odd
squares” are (1,0) and (3,2) (mod 4). If ¢ is odd and d is even, but y Z x? (mod4),
then (¢, d) — (1,0) € (2) = P? and a match, 82, will have 2?|| 2. Then 4| m. If
¢, d are odd, the only match will have 2*| 82 and then 24| m. If ¢ is even, d odd,
again the only match has 2* || 82; since 21| N(c + &/Z ) we have 2° || m.

The case Z = 3 (mod 4) is similar to the above; in this case the “odd squares” are
(1,0) and (3,0).

7.2. Case 2. Let Z =5 (mod 8). Then w = (1 + YZ)/2, and (2) = P. We can write

y=a+ bo=2%c+dw) =2y,

and if k is even, y ~vy,, while if k is odd, then y ~2y,. If Z=8; + 5, the odd
squares (mod4) are: (1,0), (25 + 1,1), (25 + 2,3). Then a match for the reduced
form of y is 1 if it is congruent to one of the odd squares (mod 4) and is 4 otherwise.

7.3. Case 3. Let Z=1 (mod8), so w=(1+VZ)/2. Now (2) = PQ, and the
situation is more complicated accordingly. The tables of Appendix 1 give enough of
the arithmetic of R/(4) for our purposes; note that (writing Z = 8y + 1) there are
different tables for y even and y odd. Tables Ia and Ib give some of the multiplica-
tion of R/(4). Table II gives the norm modulo 4, for y = 0 (mod 2). If y is already
reduced then these tables allow the determination of the power of 2 dividing m; one
need only decide if 1 — y is in P2, Q2, (4), or none of these (Corollary 5.3). The
results are in Table V.

The reduction process is more involved, and for this we need Tables III and IV.
Suppose ¥ = n + mw has even norm and y & (2); say y € P. Choose 8 € Q so that
N(B) =2b, b =1 (mod4). Write N(n + mw) = 2/x, x odd. Then B(n + mw) =
2(a + bw); Table III gives the values of (a, b). Note that we need to know whether
x is congruent to 1 or 3 mod 4 to take care of the case when j is even. For Table IV,
we have X = 2(n + mw) where N(n + mw) = 2x, x odd. Choose 8 as for Table III;
then XB2 = 4(a + bw). In Table I11, if j = 4, and if B%(n + mw) = 4(u + vw), then
(n, m) = (u, v) (mod 2), so that in fact this process is reasonably short.

7.4. Examples. As an illustration, we find the value of m for some quartic fields
discussed by Daniel Shanks in [2]. The situation is this: Let 7= X + YVZ and
t=T+yT?— 1, where Shanks’ requirements are that Z,4X, and 4 X* — Y?Z)
are integers, and | X — YY/Z |< 1. Then  is a root of the reciprocal polynomial:

f(y)=y*—4x* + 2+ 4(X* - Y?Z))y? —4Xy + 1.
Dr. Shanks has shown that

dis( ) = ((4Y)’Z)" F()f(—1)

(personal communication), but it is not very easy to find the value of m from this; in
practice disc f seems to have a lot of extraneous factors. It is easier to tackle
y = T? — 1 directly. Below, we give the values of m for most of the examples listed
in [2]. We do two of these in detail, and for the rest we indicate the main steps.
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(A) Let A = (13 + V/193)/2. Then Z = 8-24 + 1, and y = 24 is even. We have
A=6+wand A2 —1=(A4— 1) A4+ 1)=( + )7+ »). Mod 4, this is 42 — 1
=(1,1)-(3,1) = (3,1) (Table Ia). One computes N(4 — 1) = —18, N(4 + 1) = §,
so N(A* — 1) = 2%(—9); for our tables, j = 4 and x = —9 = 3 (mod 4). Then four
multiplications by a suitable B yield the sequence

656201 56,2).

We use Table III; observe that it is not necessary to carry out any actual calcula-
tions, nor to know anything more about 8 than that it exists. So y = 4> — 1 ~ v,
where v, = (3,2) (mod 4). From Table V, 4|| m; alternatively, from Table Ia we see
that (3,2)-(0,1) = (0,1) = (2,1)? and a match for y, is 8% = (2,1)* (mod 4), with
21l N(B). N(v,)is odd, so 4 || N(B*y,) and 4 || m. Finally, 3 is not ramified in F, and
A%* — 1 = 0 (mod 3) so we have y ~ y, where 3} N(y,); hence 3} m. The factor —1
is not square, som = —4.

(B) Let B= (25 + V697 )/4 = (12 + w)/2. We have 697 = 8.87 + 1; y is odd.
Since B> —1~4B?— 4, weuse 2B—2=10+rw=2,1)and 2B+ 2= 14+ w
=(2,1); N@B—2)= —2°% and N2B + 2) = 36; N(4B* — 4) =2%—9); j =38,
x = —9 = 3 (mod4). We have (2,1)-(2,1) = (2, 1), and the sequence is

(2.1) o (2,1)>(0,3) >(3,2)

and as before, 4| m, 3t m, and m = —4.
The remaining examples from [2] are given below in tabular form.

8. Cubic Fields. We use the notation of the previous sections, where now F is a
cubic extension of Q. Then | R/(4)|= 64, | R/(2)|= 8, and there are eight equiva-
lence classes of squares (mod 4). The structure of the monoid M is determined, up to
isomorphism, by the factorization of (2) in F. (Since F is a cubic field, this is an easy
consequence of the results of Section 6; it is also easy, if tedious, to show this
directly.) When (2) = P, a prime in F, then M — {0} is a cyclic group of order 7; for
all other cases, we give the tables for M in Appendix 2.

We seck the power of 2 dividing m = (disc S)/(disc R)*. The situation is fore-
shadowed, to some degree, by the quadratic case: if y is already reduced relative to
2, it is comparatively simple to discover this power of 2, while if y is not reduced,
some sort of reduction process is needed. If (2) has only one prime factor, reduction
is a simple matter; if (2) has two prime factors there are some manageable
difficulties. If (2) has three distinct factors, we have found (so far) only a partial
solution to the reduction problem. We shall work out one comparatively simple case,
with (2) = PQ. The necessary tables are given in Appendix 3. The methods used for
the quadratic case are not sufficient here, doubtless reflecting the fact that the two
factors of (2) are not of the same degree; nevertheless there is considerable
similarity.
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Let f(x) = x*> 4+ 2x2 + 1. Then disc f = —59, and (where a is a root of f(x)),
(1, a,a?} is an integral basis for R. We denote a + ba + ca® by (a, b, ¢). The
multiplication in R (or in F') is given by (a, b, ¢) - (7, s, t) = (X, y, z) where:

x=ar—cs+(—=b+2)t,
y=br+as—ct,
z=cr+ (b—2c)s+ (a—2b+ 4c)t.

Let C be the companion matrix for f(x),

0 0 -1
c=|1 0 0 |
o1 -2
The correspondence g(a) < g(C) is an isomorphism of F with Q[C]. We have
a —c —b+2c
BZ(a,b’C)HBZ b a —C .
¢ b—2c a—2b+4c

We shall have some use for the adjoint of B; say adj B < (u, v, w), where

u=a’—2ab + bc + 4ac + 2¢?,

v= —c?>— ab + 2b* — 4bc,

w = b% — 2bc — ac.
Recall that | B|= N(B); Tr(B) = Tr(B); |adj B|=|B|?, B(adjB)= N(B)I. We
investigate only the power of 2 dividing m. Since f(x) = x*> + 1 (mod 2), then in R,
(2) = PQ, where we choose P =(a+ 1,2)=(a+ 1) and Q =(a?+ a + 1,2) =

(> +a+1).
The congruence classes modulo 2, are grouped as follows:
(2) (000)
P (110),(101),(011)
Qo (111)

(1) (100),(010), (001)

If (a, b, ¢) is given modulo 2, then (a, b, ¢)?> = (x, y, z) is determined modulo 4.
The square table is:

(a,b,c¢) 000 100 010 001 110 101 OI1 111
(x,y,z) 000 100 001 230 121 332 031 113

In the first column of Table I of Appendix 3, we give a list of all (a, b,¢) Z0
(mod 2), with the left-most entry 1. (All entries are given modulo 4.) The second
column gives (a, b, ¢)-(001) and the third gives (a, b, ¢) - (230). Thus the elements in
any row (in the first three columns) are equivalent mod ~ via multiplicaton by unit
squares. Every (a, b, ¢) is either congruent (mod 4) to one of these, or to a multiple
thereof by 0, 2, or 3. Thus we restrict our attention to the twelve entries of the first
column.

We need to know which of these are reduced relative to two. If 8, = B, (mod 4)
then N(B,) = N(B,) (mod 4), so the entries of the fourth column tell that all the
units are reduced, and also (110) and (132). One checks that (111), (131), (133) are
all reduced, and (113) is not.
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Next, which vy satisfy: y = 0 (2), 82y is a square (mod 4), where y and 8 are both
reduced? We first choose y by: BE P, 1 —y € @2, and then B € 0, 1 — y € P2.
We require y reduced, and not a square (mod 4), so this gives:

@) B € Py € {(213),(322)},

(i) BEQ, y=(u,v,w)withu +ov+w=1(mod4) or y € {(122), (010), (320),

(131)}.
For every possible y listed above, we also include every y’ ~ y from Table I; for
example, with (213) we also have (110) and (303). This set of y is a complete set
satisfying the stated requirements (Corollary 5.3).

From Theorem 5.1, if y is reduced and y =0 (mod?2), then a match for y is
B? = 22. The only way 3uch a y can be reduced is if it has the form 2(x, y, z) where
N(x, y, z) is odd. We have considered all possibilities and the results are listed in
Table V.

There remains the problem of finding a reduced form vy’ (mod 4) for some given y
which is not reduced relative to 2. We shall assume first that y 2 0 (mod 2). In Table
I1, we give the result (x, y, z) of multiplying y € P by (111) and dividing through by
two. Each y gives rise to two possible (x, y, z); where y is already reduced, one of
them has norm congruent to 1 (mod4) and the other to 3 (mod 4). Where vy is not
reduced, one of the (x, y, z) is reduced, and the other is not. Now if N(y) = 2/x,
and if y ~ y’ where ¥’ is reduced, then N(y") = 2 (mod4) if j is odd, and N(y’) = x
(mod 4) if j is even. Thus we can “chase the table” to a unique result, for y € P,
y Z 0 (mod 2). (We give an example later.)

Unfortunately, for y € Q, the “table approach” does not work unless N(y) = 4/x,
x odd, j odd. Of course, we can construct a table, using the multiplier (110) (Table
III) but the result is four possibilities for (x, y, z); in case j is even, we have found
no simple way to distinguish these in general. We get around the problem by using
the adjoint (described earlier). This works equally well whether j is even or odd; here
we assume j even. Let y = (u, v, w) so that

u —-w —v + 2w
yoG=|yp u —w
w v—2w u—2v0+4w

We have N(y) = 4’x and y € Q. It is shown in [3] that the Smith form S of G has
the form

1 0 o0
s={o 2/ 0|,
0 0 27

where y| z and yz = x (indeed, every y € Q, y = 0 (mod 2), must have such a Smith
form and conversely). The Smith form S, of adj G is then

1y

0
s, =2/|0 0
o .

o N O

2/x
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That s, adj G = 2/B, where B is an integral and B = 0 (mod 2). We have B < (a, b, ¢)
and (a, b, ¢) € P, (a, b, ¢) Z (000) (mod 2). We have

(uow)-2/(abc) = 4'x,
(u,v,w)- (xa, xb, xc) = 2/x%.

Since j is even, we have (u, v, w) ~ (xa, xb, xc); since x is odd, this is well-de-
termined modulo 4. Finally, since (xa, xb, xc) € P, we can use Table II.

Now suppose y = 2y,, where y; Z 0 (mod 2), and N(y,;) = 2’x (x odd). If y, € P
and 7 is even, or if y; € Q and ¢ = 0 (mod 4), then we have y ~ 2y’ where N(y’) is
odd, and 2° || m from Table V. We now suppose that either y, € P and ¢ is odd, or
v, € Q and ¢t = 2 (mod 4).

If vy, € P, we use Table II to find v,:

Y, = B/2".
(Since ¢ is odd, we do not have y, ~ v,; note that N(y,) will be odd.) Now compute
Y3, using Table IV:

¥ =7, X (111) (mod 4).

Then 2y, X B'*1/2!*1 ~ y,, where v, is reduced, and we use Table V to find m.

If vy, € Q, we use the procedure described previously to find a y’ ~y, with
¥y’ € P, and then proceed as above.

Example (a). Let y =5 + 7a + 4a* Then y = (130) (mod4), y € P, v is not
reduced. We find N(y) = 388 = 4-97, so we know: y-(111)/2 is reduced and
vy - (111)? /4 must have odd norm, congruent to 1 (mod 4). This gives the sequence

130 - 101 ~ 3- (110) - 3- (010).
Since (030) is not in Table V, a match for this is 82 = 22 Since (030) has odd norm,
we have 2° || m.
Example (b). Let y = 9 + Sa + 3a% Then N(y) = 4°, and we can use Table III.
The sequence is (each arrow represents a single application of the multiplier (110))
113 - 331 - 113 - 331 = 3 (113) - 333,
We use here the fact that, in Table III, the entries (111), (133), (313) are all

equivalent mod ~ . Then from Table V, 26| m.
Example (c). Lety = 5 + Sa + 3a®: N(y) = 2*-17. We have

5 -3 1 g 5 1
G=|5 5 —3|, aiG=4/-11 8 5|
3 1 7 -5 -1 10

Then (5, 5,3)- (8, — 11, —5) = 4- 17; since 17 = 1 (mod 4),
(5,5,3) ~17- (8, =11, =5) =(8, — 11, —5) =(0, 1,3) (mod 4).

Since |adj G |=| G |* = 28-17%, we know that N(8, —11, —5) = 4-17% Then from
Table 11,

013 ~ 112 - 321 ~ 3- (132) - 3- (032).
Then y ~ v/, where ¥’ = (012) (mod 4). From Table V, 22 || m.
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Example (d). Let y, = 8 + 3a + &%, y = 2v,. We find N(y,) = 2° X 13, and we
have the sequence:

(031) ~ 3 X (112) - 3 X (130) - 3 X (112)
- 3 % (130) - (303) — (232) ~ (120).

Here, vy, = (031) and y, = (232). Then y; = (111) X (120) = (333). From Table V,
28| m.

Appendix 1

Let Z=8y + 1,and w = (1 + VZ)/2. We denote n + mw by (n, m); in all these
tables, n, m are reduced modulo 4. R is the set of integers in Q(VZ ). Tables Ia and
Ib give the multiplication in R /(4), for the two cases y even and y odd, for values of
(n, m) = (0,0) (mod?2). Table II gives N(n + mw), reduced modulo 4. For Table
III: given (n, m) £ (0,0) (mod 2), where N(n + mw) is even. Choose 8 in R so that
N(B)=2b, b=1 (mod4) and B-(n + mw) = 2(a + bw). Write N(n + mw) =
2/x, x odd. Then Table III gives the values of (a, b) modulo 4. For Table IV, we
have X = 2(n + mw) where N(n + mw) = 2x, x odd. Choose B as for Table III;
X-B% = 4(a + bw); we give the values of (a, b) (mod 4).

TABLE Ia (y even)

10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

10 | 10 [ 20 | 30 J 01 |11 |21 {31 |02 j12 |22 |32 [03 |13 |23 |33
20 00 | 20 | 02 | 22 |02 [22 |00 |20 |00 |20 |02 [22 |02 |22
30 10 | 03 |33 |23 |13 |02 |32 |22 |12 {01 |31 |21 {11
01 01 |02 |03 |00 |02 [03 |00 |01 |03 |00 |01 |02
11 13 |20 |31 |00 |11 |22 |33 02 |13 ]20 |31
21 01 [ 22 |02 |23 |00 [21 |01 |22 |03 |20
31 13 {00 | 31 [ 22 |13 |00 |31 |22 |13
02 00 | 02 {00 | 02 |02 |00 |02 | OO
12 10 | 22 | 30 {01 13 |21 33
22 00 | 22 {00 |22 |00 |22
32 10 | 03 |31 |23 |11
03 01 | 00 | 03 |02
13 13 | 22 31
23 01 | 20
33 13
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TaBLE Ib (y odd)

10 20 30 01 11 21 31 02 12 22 32 03 13 23 33
10 | 10 | 20 | 30 ] o1 ] 11| 21 | 31 ] 02|12 | 22| 32]03][13] 23] 33
20 00 | 20 | 02 | 22 | 02 | 22 | 00 [ 20 | 00 | 20 | 02 | 22 | 02 | 22
30 10 | 03 {33123 ] 13 ] 023222 12 01 |31 ]2 |11
01 21 | 22 1 23|20 | 0210300} 01 |231420]21 |22
11 33 1 00 | 11 ] 00 | 11 | 22 | 33 |22 |33 | 00 | 11
21 21 | 02 | 02 {23 |00 | 2121 {o02]23]00
31 33 100 [ 31 |22 |13 ]20 {11} 02] 33
02 00 | 02 ] 00 | 0210200/ 02]00
12 10 | 22 130 {01 |13 ] 2133
22 00 | 22 | 00 | 22 | 00 | 22
32 10 ] 03 | 31 | 23|11
03 21 | 20 | 23 | 22
13 33 |02 | 11
23 21 | 00
33 33
TABLE 11
Z=8y+1

N(n + mw) =r (mod4), (n, m) reduced mod 4, not both even.

(n, m)

(11D
(3.3)
(1,3)
3.1
2,1
(2,3)
0, 1)
©,3)
(1,0)
(3,0)
(1,2)
(3.2

r (y even)

2

W W= = O ONMNNOON

r (y odd)

W W= = NN DNNDNDO O
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TaBLE II1
y even
j>1 j=1
(n, m) Jj= j>2 (n, m) X=14) X=34
(1,3) 3,3 3,01 1,1 3,0 3,2)
3,1 1,1 (1,3) 3,3 (1,0) 1,2)
0,1 2,3) ©, 1) 2,1 3,0 (1,2)
©,3) 2,1 ©,3) 2,3) 1,0 3,2)
y odd
j>1 j=1
(n, m) j=2 j>2 (n, m) X=14) X=314)
(1,1 3, 3,3 (1,3) (1,0) (1,2)
3,3) (1,3 (LD 3,1 3,0 3,2)
2,1 ©,3) 2,1 ©, 1 3,0) (1,2)
2,3) o, 1 2,3) ©,3) (1,0) 3,2)
TABLE IV

For these tables: U = 2(n + mw) where N(n + mw) = 2x, x
odd. Let B=w + 2if yiseven,nand modd; B =w + 1if y
is even, n even, m odd; 8 = w if y is odd, » and m odd; and
B =w — 1ifyis odd, n even, m odd. Then(B82/4)U = a + bw.

y even
x = 1 (mod 4) x = 3 (mod 4)
1(n, m) (a, b) (n, m) (a, b)
1,1) (2,3) 1,1 1
(3.3) @1 3,3) 2,3)
1) (3,3) (¢ 1,1
2,3) 1,1 2,3) 3,3
y odd
x = 1 (mod 4) x = 3 (mod 4)
(n, m) (a, b) (n, m) (a, b)
(1,3) ©,1) (1,3) ©,3)
3.1 ©0,3) €R) ©,1)
©0,1) (1,3) ©,1) 3.1
©,3) €R) 0,3) (1,3)
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odd
odd
odd
even

even
even
odd
odd

odd
odd
even
odd

n
4k + 1
4k + 1
4k + 2
all others with n, m not
both even
2k

n
4k + 1
4k + 3
4k
all others with n, m not
both even
2k

THERESA P. VAUGHAN

TABLE V
(a) Z=2(mod4)

n+ m =1 (mod4)
n+ m = 3 (mod4)

(b) Z=3(mod4)

Exact power of 2
dividing disc S
26

Exact power of 2

m dividing disc §
4j 24
4j+2 26
odd 28
odd 2°

(c) Z=5(mod16)

m

4j

4;+1

4;+ 3

2j  J, knot botheven

(d) Z =13 (mod 16)

m

4j

4j + 1

4;+ 3

2j  J, knot both even

Exact power of 2
dividing disc §
2tdisc S

24
26

Exact power of 2
dividing disc S

2tdisc S

24
26



THE DISCRIMINANT OF A QUADRATIC EXTENSION

() Zz=8y+1

n m Exact power of 2
dividing disc S
4k + 1 4; 2tdisc §
4k + 3 4j+2 22
4k + 1 4j+2 22
4k + 3 4; 24
2k 4j+ 1(k-y odd) 2°
2k + 1 4+ 3 (k-y odd) 2°
2k 4j + 1 (k-y even) 23
2k + 1 4;j + 3 (k-y even) 23
4k + 2 4j 26
Appendix 2
TaBLE I

For this table, (2) = P,P,P,inR, U= {e},a~ P}, b~ P},
f~ P} c~P}P}, g~ PP}, d~ PIP;.

e a b c d f g 0
e e a b c d f g 0
a a g 0 d d g 0
b b c 0 c g 0
¢ c 0 c 0 0
d d d 0 0
f foo0 o0
g g 0
0 0

TasLE 11
For this table, (2) = PQ in R where Q has degree 2.
Then U = {e, a, b}; f,c,d ~P?and g ~ Q2.

e a b c d f g 0
e e a b ¢ d f g 0
a b e f ¢ d g 0
b a d f ¢ g 0
c d f c 0 0
d ¢ d 0 0
f f 0 0
g g 0
0 0
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TaBLE 111
For this table, (2) = PQ?inR; U= {e, g},a~ Q?, b~ Q%
¢,d~ P2, f~ P2Q2.

e a b c d f g 0
e e a b ¢ d f g 0
a b b f f 0 a 0
b b 0 0 0 b 0
¢ d ¢ f d 0
d d f c 0
f 0 f 0
g e 0
0 0

TABLE IV
For this table, (2) = P*inR; U = {e,c,d, g}; a, f~P*and b ~ P*.

e a b ¢ d f g 0
e e a b ¢ d f g 0
a b 0 f a b f 0
b 0 b b 0 b 0
¢ d g a e 0
d e f c 0
f b a 0
g d 0
0 0

Appendix 3
TaBLE I

The first column is 8 = (abc); the second column is 8- (010)?,
the third is 8- (010)*, the last column gives N(f) modulo 4.
All entries are given modulo 4.

B Ba? Bat N(B)

100 001 230 1
102 021 030 1
120 201 232 1
122 221 032 1
110 303 213 2
112 323 013 0
130 103 211 0
132 123 011 2
111 133 313 0
131 333 311 0
113 113 113 0



THE DISCRIMINANT OF A QUADRATIC EXTENSION

707

TABLE 11 TaBLE 111
B-(111)/2 = (xyz) B-(110)/2 = (xyz)
B xyz B xyz
110 010, 232 111 010,032,212,230
112 103, 321 131 021, 003, 223,201
130 323,101 113 111, 133,313,331
132 012,230
TABLE IV
X 110 112 130 132 111 131 113
102 312 310 332 330 333 313 331
120 132 130 112 110 333 313 331
122 330 332 310 312 111 131 113
TABLE V

We list those y (modulo 4) such that (a) vy is reduced relative
to 2, and (b) y has a match 82 with 8 = 0 (mod 2). For each y
we give the corresponding B, and the power of 2 dividing

N(B*Y).
y
100, 001, 230
213,110, 303
322,223,012
131,333,311
122,221,032,
320,203,212,
010, 023, 302

B N(B%Y)
1 odd
(110) 23
22
(111) 26
(111) 24

If y is reduced and not listed above, then a match for y is 82 = 22.
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