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The Discriminant of a Quadratic Extension 
of an Algebraic Field 

By Theresa P. Vaughan 

Abstract. Let F be an algebraic field, and K an extension of F of degree 2. We describe a 
method for computing the relative discriminant D for K over F. We work out the details for 
the case when F is quadratic and give tables which yield D very easily. We also apply the 
method to one type of cubic field F, and give tables for it. 

1. Introduction. Let F be an algebraic number field, and K an extension of F, of 
degree 2 over F. We seek a "practical" method of computing the relative discrimi- 
nant D of K over F. 

Suppose K = F(F/y), where y is an integer in F; we write (y) for the principal 
ideal generated by -y in the ring R of integers of F. Put D = 2kD, where D1 is odd. If 
p is an odd rational prime and P is a prime ideal divisor of (p) in R, we must 
discover whether P divides (y) to an even or odd power. Then (Theorem 3.4) D1 is 
the product of all norms of such ideals P, which divide (y) to an odd power. Thus, 
the difficulty of finding D1 is about the same as that of factoring (y). 

The determination of the integer k is rather more complicated. In Section 4, we 
show the following: 

(a) There is a y, in R so that y/y, is a square in F and (y,) is not contained in the 
square of any prime factor of (2) in R; 

(b) There is a /3 in R so that /22yj is congruent to a square modulo 4, and /3 
satisfies certain minimality conditions: 

(c) 2k divides the norm of 32kyl exactly (Theorem 4.6). 
In actual computation, most of the action takes place in R/(4). If [F: Q] = n, 

then I R/(4) I= 4nf, and clearly it is desirable to have as many restrictions as possible 
on the nature of a suitable /3. We address this problem in Section 5. The behavior of 
the squares in R/(4) is of considerable interest, and we investigate this monoid in 
Section 6. 

In Section 7, we discuss the case of a quadratic field F = Q(Vn ). The only case 
which is not almost trivial is that of n =1 (mod 8). In Appendix 1, we give tables for 
some of the arithmetic of R/(4) in case n =1 (mod 8); Table V of Appendix 1 
summarizes the results for all n. With the aid of these tables, one can easily find the 
relative discriminant; the only computational difficulty lies in finding and factoring 
the norm of y. For specific examples, we work out relative discriminants for a list of 
fields given by D. Shanks in [2]. 
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In Section 8, we give a partial discussion of the case when F is a cubic field. The 
monoid of squares in R/(4) is completely determined (up to isomorphism) by the 
factorization of (2) in R; we give tables for these monoids in Appendix 2. We work 
out the details for the field F = Q(a) where a is a root of X3 + 2X2 + 1. (Here we 
have (2) = PQ; this type is of moderate difficulty; the worst case is when (2) splits.) 
Note that if g(x) E Z[x] and g(x) is irreducible and congruent to X3 + 2X2 + 1 
(mod4), then all the work done for Q(a) carries over, mutatis mutandis, to Q(,/) 
where /3 is a root of g(x). 

In a later paper we hope to complete the work begun in Section 8, and give a 
complete discussion of all the types of cubic fields. 

2. Preliminaries. Let F = Q(a) be an extension of Q of degree n, where a is a root 
of an irreducible monic polynomial with integer coefficients, 

f(x) = ao + a,x + a2x2 +?_ +xn. 

The conjugates of a are the roots of f(x) in C; we denote these by a(') (i = 1, 2,... ,n). 
The trace and norm of a are defined by 

fl n 
Tr(a) = I a('); N(a) = fj a('), 

and one has Tr(a) =-an-, and N(a) = (-I)nao. 
All of the following material may be found, in one form or another, in [1]. 
Let R be the ring of algebraic integers in F. Let C {al, a2, .. an} be a basis for 

F over Q, with a, E R (i = 1, 2,... ,n), and let A be the matrix whose (i, j) entry is 
a'). 

Then the discriminant of C is disc C = I A 12. If C6 is an integral basis for R, then 
disc 6f = disc R, and otherwise, disc 6f = k2 disc R where k E Z, k > 1. 

Now let K be a quadratic extension of F, and let S be the ring of integers in K. 
Then for some y in F, with y not a square in F, we have K = F(V-y). Evidently, one 
may assume without loss of generality, that y E R. 

Suppose that E = (/ + SVy)/j E S, where /, 8 E R and j E Z. Define the set @ 
by 

tal = a1?2 ?nE, R,... ,n a,ea ..ean} 

2.1. LEMMA. With all notation as above, if {a 1, a2,... -,a} is an integral basis for R, 
then 

disc q = (discR ) ( (2)) 

Proof. See [1, p. 43]. 0 
Finally, we use the following notation. If p, n E Z and p is prime, then pt ll n 

means that pt I n and pt+ l t n. If /3 E R, then (/) is the principal ideal generated by 
/. If P is a prime ideal in R, then Pt II (/) means that / E Pt and P t+. 

3. A Reduction Process. Define the equivalence relation - on F* by YI 2 if and 
only if y y - 1 is a square in F. Let [y] denote the equivalence class of y. 

3.1. Definition. Let -y E F* and suppose p is a rational prime. Then there exists 
some Yi E [y] satisfying: 

(a)y1 ER, 
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(b) pt II N(-yl) (t ;>- O, t E Z), 
(c) Ify2 E [y] n R and if ps 11 N(y2), then t s s. 

Such a yl is said to be reduced relative to p. 

3.2. LEMMA. Let y E R, and let p be a rational prime, where {Pi: i = 1, 2,... ,k} is 
the set of the prime ideal divisors of ( p) in R. Then for any i = 1, 2,. .. ,k, Y E pi2 if 
and only if there exists some k E Z with (k, p) = 1, and some 8 E R such that 

Pi 11 (8), and Pi t (8) if i 7# j, such that 

k2y = 82y 

for some yl in R. 

Proof. Fix i, and put P = Pi. Choose 8 as described above. Then there exists E E R 
so that Se = pk, where k E Z and (k, p) I I (E is in the conjugate of P). Then, if 

E P2, we have 

Ecy p *Y1 

for some Y1 in R, and hence, multiplying both sides by 82, we have k2y = 82 - Yl as 
required. The converse is obvious. O 

3.3. LEMMA. Let y and p be as in Lemma 3.2. Then y is reduced relative to p if and 
only if y 4 pi2 (i = 1, 2,...,k). 

Proof. Suppose first that y E pi2 for some i. Then by Lemma 3.2 we have 
k22y = 82y- where (k, p) = 1, PiII(8), and PjI(8) if i#ij. Then y - yl, and if 

pu II N(y) and pv II N(yl ), clearly v < u. Then -y is not reduced relative to p. 
On the other hand, suppose y p P12 for any i, and y - yl where yl is reduced 

relative top. By the above, we know y pi2 for any i, and we also have a2y = 

for some a, ,B E R. Then p 2r+ I11 (a2y) is possible if and only if P 11 (y); since 
a2y = /2_y1 we have P 11 (y) if and only if P11l (yl). Then N(y) and N(yl) are 
divisible by exactly the same power of p, and so by definition, since yl is reduced 
relative top, so is y. O 

If p is an odd prime, the situation is easily described. 

3.4. THEOREM. Let p be an odd prime and y E F, where -y is not a square in F, and y 
is reduced relative to p. Suppose that pt II disc R and pS II N(y). Then p2t+s 11 disc S. 

Proof. Since p > 2, we need only show that if a, ,B E R, then (a + /3By )/p A S 
unless (p) I (a) and (p) I (,) (Lemma 1.1). Thus suppose that (a + B/F/Y) = pe for 
some e E S. Then also (a - P/f) = pe, for some el E S. Since 2a = p(e + El) and 
p is odd, then (p) I (a). Then a2 - /32y E (p2) implies that /32y E (p2). But since y 
is reduced relative top, (y) is not divisible by the square of any prime factor of (p). 
Then (p) I (/3) also. The result follows from Lemma 1.1. O 

4. The Case p = 2. Not surprisingly, this case requires special treatment, begin- 
ning with another definition. 

4.1. Definition. Let y E R be reduced relative to 2, and not square in F. Choose 
/3 E R as follows: 

(i) For some a E R, a2 - /2y 0 (mod 4). 
(ii) 2t II N(T32y). 
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(iii) If E, 8 E R and if E2 = 32Y 0 (mod4) and if 25 11 N( 2y), then t < s. 
We say that such a /32 is a match for y. 

This section is devoted to proving that 2t 11 (disc S)/(disc R)2. We assume 

throughout the rest of the paper that 
(2) = plp2e2 ... per 

in R, where the Pi are prime ideals. 

4.2. LEMMA. (a) Let a, / ER. Then a2 /32 (mod 4) if and only if a P (mod 2). 

(b) Suppose Pia' 11 (a) and Pib' II (/3) for i = 1,2,... , r, and let k be a positive integer. 

Suppose that 0 < a,, bi ? kei for i 1,2,... ,r. Then a /3 (mod2k) implies a, = b 

for i = 1,... ,r. 

Proof. (a) Let a2 - /32 = 4e for some E in R. If pia 11 (a-,/) and P,b 11 (a + /3), 
then a + b > 2ei and hence (say) a > ei. Since a - /3 a + /3 (mod 2), then also 

b > ei, and we have a /3 P (mod 2). The converse is obvious. 

(b) Put 8 3 a -/, and suppose that, for some i, ai < bi - kei. Then 8 E pia- 

Pia,+l, and since al < ke, then 8 i (2k), a contradiction. O 

4.3. LEMMA. Let a, /3, y E R. Then (a + P3B/y)/2 E S if and only if (a 2 - /2y)/4 

E R. 

Proof. First suppose that a2 - /32y = 4c in R. Then in S, we have /32y = (,B)2 

= /32, and then a2 - B2- 0 (mod 4) in S implies a ? (mod 2) in S, by Lemma 

4.2. That is, (a ? /3-y )/2 E S. 
Conversely, if (a ? P/Fy)/2 E S, then the conjugate (a P /fjy)/2 is also in S. 

Then the product (a 2 - /2y)/4 is in S. But this product is in F, so it is in R. O 

4.4. LEMMA. Let -y be reduced relative to 2, and suppose for some a, /3 in R we have 

(a + /3Jy)/2 in S. Then (a + /3ft)/4 is not in S unless a = 2a, and /3 = 2/31 for 

some a,, P, in R. 

Proof. Suppose (a + /3-/y)/4 E S. Then also the conjugate (a - P/3-y)/4 E S, so 

a/2 E S. Since a/2 E F, this gives a = 2a, for some a, E R. Suppose next that 

/3/2 5 R. That is 
(/3) = pblpb2 . . . PrbrX (0? bi, i = 1,2,... ,r), 

where X is an ideal of odd norm, and for at least one i, b, < ei. Since y is reduced 

relative to 2, we know that P,9r 11 (y), where g, = 0 or 1, for i = 1,2,... ,r. Then we 

have pl2b,+g, 11 (/2.y) where for at least one i, bi < ei, and 2bi + gi < 2e,. Hence 

(/32y) 4 (4), that is /2y/4 5 R. But now, we can write (2a1 + /3ft)/2 E S, which 

gives ,/3'y/2 E S and /32y/4 E R, a contradiction. Thus we must have /3 = 2/3k. 

4.5. LEMMA. Let s E R, and suppose that Ps1 (s) (i 1,...,r). Choose /3, E Pi 50 

that: P, II (/, ) and P. I (/, ) if ij; for i = 1, 2,. . .,r. Then 
(a) There exists x in R with odd norm, such that 

S- X/S3IP22 
... 

*rSr (mod 4). 

(b) There exists s' in R such that s = s' (mod 2), and y in R with odd norm, such that 

s' = y/fllu22 
... .ur 

where u,=min(sl,,e,) for i =, 2, . ..,r. 
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Proof. (a) For each /BI, we can find Si E R so that /,B Si = 2mi, where m, is an odd 
rational integer. Since m -+- 1 (mod 4), (a) follows from successive applications of 
the process described in Lemma 3.2. To see (b), use the expression from (a). If 

si < el, then ul = sl: if s, > ei, ei = 1,3 + 2 has pe, 11 (E1), PjI(el) if i #1j, and by (a) 
we can write cel1/3xi (mod 4), where xi is some integer of odd norm. Substituting E, 
in the expression from (a), for all i for which el < sl, we get (b). 

At last, we are in a position to prove: 

4.6. THEOREM. Suppose that y is reduced relative to 2, that y is not square in F, and 
that /32 is a match for y, with 2 1 1 N(/32y). Then 2' 11 (disc S)/(disc R)2. 

Proof. There is some a in R so that a2-f/2y 0 (mod 4), so by Lemma 4.3, 
(a + /3VY)/2 is in S. Using the notation of Lemma 1.1 with j 2, we have 
disc 'S3 = (disc R)2 N(/32y). The result will follow if we can show that, for all u, s in 
R, if X = (u + s(a + /31Y)/2)/2 is in S, then u = 2u1 and s = 2s1 in R. Thus 
suppose that X E S. By Lemma 4.5(b) it is clear we may assume that, if for any 

12,. .. , r we have Pi1 (,B), thenj < ei, or if PiJ I (s) thenj < el. Since 

X= ((2u +sa) +s/ Fy)/4 ES, 

it follows from Lemma 4.4 that sa = 2a and sf3 = 2/3k for some a , 3,i in R. 
Suppose that Pls 11 (s) and plb, 11 (/3), with s, < el, bl < el, for i = 1, 2,- * *, r. Then 

s,B = 23,k implies that bi + s, > ei (i = 1, 2,. .., r); or 

Si = el-bb[ + W (O < wi < b) 

So we have plw, 11 (PIk). 
Next, from Lemma 4.3, we get 

(u + a,)2 - p2y-- 0 (mod 4); 

say 2v 11 N(/32jy). If any of the w1 were less than bl, we would have v < t, contradict- 
ing the choice of /3. Thus every w1 = bi, and then every s, = el, so that s = 2s, for 
some s in R. Now also we have 2u/4 in S, that is, u = 2u1, and this completes the 
proof. O 

5. Some Refinements. As it stands, Theorem 4.6 does not look very useful, since 
the squares in R fall in 2n congruence classes (mod4) and 2n is rather a large 
number. In this section we give some conditions that a and /3 must satisfy in order 
that a 2-=/2y 0 (mod 4). 

5.1. THEOREM. Suppose that y is reduced relative to 2, and that a 2 - /23y = 0 

(mod 4), and that we have 

Pi a11 (a), Pib= pig 11 (Y) 1,2,... ,r). 

(a) We may assume that 0 < ai, bi < el. 
(b) For i = 1, 2, . .. ,r, ai = bi, and if gi = 1, then ai = bi = ei. 

Proof. Part (a) follows from Lemma 4.5(b), and (b) from (a) and Lemma 4.2(b). 

5.2. LEMMA. Suppose that a, /3 are in R and that p,a, 11 (a) and pia, 11 (/3) for 
i = 1,2,... .,r. Then there exists some x E R with odd norm, such that a 2 = X2* p2 

(mod 4). 
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Proof. Lemma 4.2(a) and Lemma 4.5(b). D 

5.3. COROLLARY. Let a, /3, y be as usual. Then a2 - /2y 0 (mod 4) if and only if 
there exist x, y in R, both having odd norm, such that 

(i) , 2(x2 - y) 0 (mod 4), 

(ii) a2(1 - y2y) 0_ (mod 4). D 

5.4. THEOREM. Let y be reduced relative to 2, and suppose that p2 is a match for y, 
with a2- 2y 0 (mod 4). Suppose that a, and Al, in R also satisfy a1 - /3y 0 
(mod 4). Finally suppose that 

p,b, 1(P) and Pic,I1(P,) (i= 1,2,...,r). 

Then for i = 1, 2,. . .,r, 0 ,< b < c,. 

Proof. We use Theorem 4.6. The basis Ji defined there is not necessarily an 
integral basis for S, but we do have that (disc qJ)/(disc S) is an odd integer. Then, 
putting - = (a + Afy j)/2, every integer in S can be written in the form (u + vE)/m, 
where u, v are in R and m is an odd rational integer. 

By Lemma 4.3, we have (a1 + P3I Fy)/2 in S, and thus, for some u, v in R and odd 
m in Z, we can write 

u + vE = m(a, + f4y)/2, 

and hence ma1 = 2u + va and m/,3 = v,B. Since m is odd, we are done. O 

5.5. COROLLARY. (i) Let y be reduced relative to 2 and suppose that a2 - 2-2y 0 

(mod 4) for some a, 13 in R. Then P =_ 0 (mod 2) unless there exists x in R with odd 
norm so that 

2y (mod p2a1p22a2 ... p2a) 

for some integers ai satisfying O < al < ei (i 1,. ). 
(ii) If the condition of (i) is satisfied, and if /32 is a match for y, with plb, 11(11) 

(i= 1,2,...,r),thenO<bi?ei-ai(i= 1,2,...,r). L0 

Remarks. We shall see later that the number N of squares of odd norm, 
incongruent modulo 4, varies inversely with the number of prime factors of (2) in R. 

The amount of work we have to do to find a match for some y depends on N 

(Corollary 5.3) and on the number of factors of (2) (Corollary 5.5). The most 
manageable cases are those with N small and r close to n, or with (y) having many 
of the prime factors of (2) as divisors (Theorem 5.1). 

6. The Square-Classes (mod 4) in R. Our purpose here is to find out more about 
the nature of the squares (mod 4) in R, with particular attention to those of odd 
norm. A square-class C is defined by 

C= (X2) = {a E R: a-X2 (mod4)}. 

Let M be the set of all square-classes in R. The obvious multiplication, C(x2)C( y2) 
= C(x2y2), makes M a monoid, with identity C(1); by Lemma 4.2 we have 
M = 2. Many of the results of previous sections can be restated as properties of 

M and we list these without proof. 
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Let U be the set of invertible elements in M. That is, 

U= {C(x2): N(x)isodd}. 

Evidently, U is a group. 
Choose P3i E Pi so that Pi 11 (/i) and PjI (/,i) if i #j. Then each product of the 

form 
r 

8 = PI|t,B (O S ti < ei) 
i-=1 

gives rise to a square class C((82), and these classes are distinct. Let D be the set of 
all these classes. Then 

6.1. THEOREM. Let (D be any square-class. Then there exist x, 8 in R so that 
(3(X2) E U and (3(82) E D and C = C(X2)C(82). (We shall say that C is associated 
with the r-tuple (t1, t2. * , tr).) 

We define two sets for every square-class in M: 

(j() = {2(X2): N(x) is odd andC(x2)C= C}, 

F(C) = {(C(X2)(C: N(x) is odd}. 

6.2. LEMMA. Suppose that C1 and (2 in M are associated to the same r-tuple 

(t 1,. . , tr). Then C1 E F(C2). 

6.3. THEOREM. Let y be reduced relative to 2, and suppose /32 is a match for y. Then 
there exists a in R such that a2 - /32y 0 (mod 4), and ( (a2) E F(C(/32)). 

6.4. THEOREM. (a) For every C in M, U(C) is a subgroup of U. (b) If (31 E F(C), 
then U(C1) = U(C). (c) If C1 is associated to (t1, t2,.. . tr) and C2 to (s1,.. I Sr), and 
if t1s1 + t2S2 + * * * +trsr 0 O, then U(C1) n U(C2) = {C(l)}. 

Proof. Parts (a) and (b) follow directly. To see (c), choose a 2 E (C1 and a2 E C2, 
and suppose C(X2) E U((31) n U((32). Then X2a2 E (C1 and X2a2 E (2, so we have 

2a2-a2 22- 2 
Xa1 =a (mod4), x a2 a2 (mod4), 

(x21-x)- (mod 4), a2 (-x)- (mod 4), 

(I - x2)- = {mod( fPite ) and (1 -x2) _0 (mod( pie-ft s 

Since . tisi = 0, it follows that (1 - x2)- 0 (mod Pi2e,) for all i = 1, 2,... ,r. Then 
(1 - x2) 0_ (mod4) and (3(x2) - ((1). 

6.5.THEOREM.IfI UI= m,and I U(C)I1 k, then IF(C)I= m/k. We also have 

2 IF(C)i = 2n 

where the sum is taken over C such that the sets F(C) are mutually disjoint. 

The cardinality of U is the number of units in the ring R/(2) (Lemma 4.2); in case 
R _ Z/( f(x)) (more or less), this number was given by Dedekind. We provide here 
the slight generalization to any R. 
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6.6. Definition. If I is an ideal in R, put 11 I1= R/II and let cp(I) be the number 
of units in R/I. 

6.7. THEOREM. 4: I -* 4(I) is a multiplicative function from the set of ideals in R to 
Z; that is, if I, and I2 are relatively prime, then c(I1I2) = 0(I1)0(I2). 

Proof. We can write 
I = Pi' ... Pkk 

where the Pi are prime ideals in R. Then 
k 

R/I - R/Pr' 
i=lI 

and u is a unit in R/I if and only if, under the isomorphism above, U corresponds to 
some (u1, u2,... . ,uk) where ui is a unit in R/Pir' (i = 1,2,... ,k). 0 

6.8. THEOREM. If P is a prime ideal in R, and r is a positive integer, then 

)( Pr) = IIPIIr(l1 - ,I P 1 ) 

Proof. The chain R D p D p2 pD ... projects naturally to R R/Pr, giving the 
chain RD P pD p2 2 ... * pr-I 3 pr {O} (where P is the unique maximal ideal 
of R). Then we have 

R - RIRP pl IP/21 p IP2/p3 II 

Since P is the unique maximal ideal of R, then u is a unit in R if and only if 
u E R - P. Thus the number of units is iipii1 r- 1l r-1 as required. L1I 

6.9. COROLLARY. Let (2) - P . per where Pi is a prime ideal of degree f 
(i= 1, ...,r). Then 

r 

I U| = )((2)) 2n (1 - 2-f). 
l~ I 

7. Quadratic Fields. We use the same notation as before, and in addition 

m = (disc S)/ (disc R )2. 

We have K= F(,/Y), where y is a nonsquare in R; we wish to compute m. In 

practice, one is often faced with a y which is not reduced relative to one or more 

primes; to find the power of prime p dividing m, we need to know something about 

reduced forms of y, relative to p. It is not necessary, in general, to find such a form 

explicitly, as our examples show. Indeed, for odd primes, all we need is the prime 
ideal factorization of the principal ideal (y) (Lemma 3.3; Theorem 3.4). If p = 2, 
however, it is also necessary to work with the arithmetic of R/(4). In this section, we 
work out the details for the case of a quadratic field F = Q(FZ), together with an 
assortment of specific examples. borrowed from a paper of Shanks [2]. The results are 
summarized in Table V of Appendix 1. 

Let F = Q(Z ), where Z is a squarefree integer. An integral basis for R is { 1, w}, 
where X = Z if Z-2, 3 (mod 4) and w = (1 + Z)/2 if Z 1 (mod4). We shall 
denote a + b coby (a, b). 
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7.1. Case 1. Let Z 2 (mod 4). An integral basis for R is { 1, Z }, and (2) p2. 

If y = a -+ bZ, we can write y = 2k(c + dJZ) where either c or d is odd; 

Y, = c + dVZ is reduced relative to 2, and y - yl. We have I U I = 2 and the "odd 
squares" are (1, 0) and (3, 2) (mod 4). If c is odd and d is even, but y 5 x2 (mod 4), 
then (c, d) - (1, 0) E (2) = p2 and a match, /32, will have 22 11 32. Then 4 11 m. If 
c, d are odd, the only match will have 24 ll 32 and then 24 ll m. If c is even, d odd, 
again the only match has 24 11 32; since 2 11 N(c + dZ ) we have 25 H m. 

The case Z 3 (mod 4) is similar to the above; in this case the "odd squares" are 
(1, 0) and (3, 0). 

7.2. Case 2. Let Z 5 (mod 8). Then X = (1 + Z)/2, and (2) = P. We can write 

y = a + bw = 2k(c + d@) = 2-ky 

and if k is even, y - yl, while if k is odd, then y - 2yl. If Z = 8j + 5, the odd 
squares (mod 4) are: (1,0), (2j + 1, 1), (2j + 2, 3). Then a match for the reduced 
form of y is 1 if it is congruent to one of the odd squares (mod 4) and is 4 otherwise. 

7.3. Case 3. Let Z 1 (mod 8), so X = (1 + /Z)/2. Now (2) = PQ, and the 
situation is more complicated accordingly. The tables of Appendix 1 give enough of 
the arithmetic of R/(4) for our purposes; note that (writing Z= 8y + 1) there are 
different tables for y even and y odd. Tables Ia and lb give some of the multiplica- 
tion of R/(4). Table II gives the norm modulo 4, for y 5 0 (mod 2). If y is already 
reduced then these tables allow the determination of the power of 2 dividing m; one 
need only decide if 1 - y is in p2, Q2, (4), or none of these (Corollary 5.3). The 
results are in Table V. 

The reduction process is more involved, and for this we need Tables III and IV. 
Suppose y = n + mc has even norm and y M (2); say y E P. Choose ,B E Q so that 
N(/) = 2b, b 1 (mod 4). Write N(n + mw) = 2Jx, x odd. Then /3(n + mw) 
2(a + bw); Table III gives the values of (a, b). Note that we need to know whether 
x is congruent to 1 or 3 mod 4 to take care of the case when j is even. For Table IV, 
we have X = 2(n + mw) where N(n + mw) = 2x, x odd. Choose /3 as for Table III; 
then X/32 = 4(a + bco). In Table III, if j > 4, and if /32(n + mw) = 4(u + vw), then 
(n, m) (u, v) (mod 2), so that in fact this process is reasonably short. 

7.4. Examples. As an illustration, we find the value of m for some quartic fields 
discussed by Daniel Shanks in [2]. The situation is this: Let T = X + Y1Z and 
t= T + T2 -1, where Shanks' requirements are that Z, 4X, and 4( X2 - y2Z) 
are integers, and I X - Y < 1. Then t is a root of the reciprocal polynomial: 

f(y) = y4 - 4Xy3 + (2 + 4(X2 - y2Z))y2 - 4Xy + 1. 

Dr. Shanks has shown that 

disc( f )=((4 Y)2Z)2f(l)f(_ 1) 

(personal communication), but it is not very easy to find the value of m from this; in 
practice discf seems to have a lot of extraneous factors. It is easier to tackle 
y = T 1 directly. Below, we give the values of m for most of the examples listed 
in [2]. We do two of these in detail, and for the rest we indicate the main steps. 
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(A) Let A = (13 + 193)/2. Then Z = 8 24 + 1, and y = 24 is even. We have 
A =6 + X and A2 - = (A - 1)(A + 1) = (5 + w)(7 + c). Mod4, this is A2 -1 

(1, 1) (3, 1) = (3, 1) (Table Ia). One computes N(A - 1) - 18, N(A + 1) 8, 
so N(A2 -1) = 24(-9); for our tables, j = 4 and x =-9 3 (mod 4). Then four 
multiplications by a suitable ,B yield the sequence 

(3, 1) -d(39 1) (1, 1) .-(3,2). 

We use Table III; observe that it is not necessary to carry out any actual calcula- 
tions, nor to know anything more about /B than that it exists. So y = A2 - 1 Y 

where yl =(3, 2) (mod 4). From Table V, 4 11 m; alternatively, from Table Ia we see 
that (3,2) (0, 1) = (0,1) = (2,1)2 and a match for yl is =B2 (2,1)2 (mod4), with 
2 11 N(1). N(yl) is odd, so 4 11 N(/32y1) and 4 11 m. Finally, 3 is not ramified in F, and 
A2 - 1 Z 0 (mod 3) so we have y - y2 where 31 N(y2); hence 31 m. The factor - 1 
is not square, so m =-4. 

(B) Let B = (25 + /697)4 = (12 + c)/2. We have 697 = 8.87 + 1; y is odd. 
Since B2 - 1 - 4B2 - 4, we use 2B - 2 = 10 + co (2, 1) and 2B + 2 = 14 + X 

(2, 1); N(2B - 2) =-26 and N(2B + 2) = 36; N(4B2 - 4) = 28(-9); j = 8, 
x -9 3 (mod 4). We have (2, 1) (2, 1) = (2, 1), and the sequence is 

(2, 1) -*(2, 1) -*(O,3) -*(3,2) 
/36 /3 /3 

and as before, 4 11 m, 31 m, and m =-4. 
The remaining examples from [2] are given below in tabular form. 

8. Cubic Fields. We use the notation of the previous sections, where now F is a 
cubic extension of Q. Then I R/(4) I= 64, 1 R/(2) I= 8, and there are eight equiva- 
lence classes of squares (mod 4). The structure of the monoid M is determined, up to 
isomorphism, by the factorization of (2) in F. (Since F is a cubic field, this is an easy 
consequence of the results of Section 6; it is also easy, if tedious, to show this 

directly.) When (2) = P, a prime in F, then M - {0} is a cyclic group of order 7; for 
all other cases, we give the tables for M in Appendix 2. 

We seek the power of 2 dividing m = (disc S)/(disc R)2. The situation is fore- 

shadowed, to some degree, by the quadratic case: if y is already reduced relative to 
2, it is comparatively simple to discover this power of 2, while if y is not reduced, 
some sort of reduction process is needed. If (2) has only one prime factor, reduction 
is a simple matter; if (2) has two prime factors there are some manageable 
difficulties. If (2) has three distinct factors, we have found (so far) only a partial 
solution to the reduction problem. We shall work out one comparatively simple case, 
with (2) = PQ. The necessary tables are given in Appendix 3. The methods used for 
the quadratic case are not sufficient here, doubtless reflecting the fact that the two 

factors of (2) are not of the same degree; nevertheless there is considerable 
similarity. 
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Let f(x) = x3 + 2X2 + 1. Then discf -59, and (where a is a root of f(x)), 
{1, a, a2) is an integral basis for R. We denote a + ba + Ca2 by (a, b, c). The 
multiplication in R (or in F) is given by (a, b, c) * (r, s, t) = (x, y, z) where: 

x ar - cs + (-b + 2c)t, 

y = br + as - ct, 

z = cr + (b - 2c)s + (a - 2b + 4c)t. 

Let C be the companion matrix for f(x), 

C= I 0 0 . 
0 1 -2 

The correspondence g(a) <-4 g(C) is an isomorphism of F with Q[CI. We have 

a -c -b + 2c 
,=(a,b,c)=*- b a -c4 

c b-2c a-2b+ 4c 

We shall have some use for the adjoint of B; say adj B *-* (u, v, w), where 

ua 2 -2ab + bc + 4ac + 2c2, 

v = -C2 - ab + 2b2 - 4bc, 

w = b2-2bc - ac. 
Recall that IB IN(j3); Tr(B) = Tr(/3); I adj B = B 2 B(adj B) = N(,)I. We 
investigate only the power of 2 dividing m. Since f(x) _ x3 + 1 (mod 2), then in R, 
(2) = PQ, where we choose P = (a + 1,2) = (a + 1) and Q = (a 2 + a + 1,2) = 
(a2 + a + 1). 

The congruence classes modulo 2, are grouped as follows: 

(2) (000) 
P (110), (101), (011) 

Q (111) 

(1) (100), (010), (001) 

If (a, b, c) is given modulo 2, then (a, b, C)2 = (X, y, z) is determined modulo 4. 
The square table is: 

(a, b, c) 000 100 010 001 110 101 011 111 

(x, y, z) 000 100 001 230 121 332 031 113 

In the first colunm of Table I of Appendix 3, we give a list of all (a, b, c) 2 0 
(mod 2), with the left-most entry 1. (All entries are given modulo 4.) The second 
column gives (a, b, c) * (001) and the third gives (a, b, c) (230). Thus the elements in 
any row (in the first three columns) are equivalent mod - via multiplicaton by unit 
squares. Every (a, b, c) is either congruent (mod 4) to one of these, or to a multiple 
thereof by 0, 2, or 3. Thus we restrict our attention to the twelve entries of the first 
column. 

We need to know which of these are reduced relative to two. If B I,2 (mod 4) 
then N(/3) _N( N2) (mod 4), so the entries of the fourth column tell that all the 
units are reduced, and also (110) and (132). One checks that (111), (131), (133) are 
all reduced, and (113) is not. 
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Next, which y satisfy: y i 0 (2), '32y is a square (mod 4), where y and 1 are both 
reduced? We first choose -y by: /3 E P, 1 - y E Q2, and then /3 E Q, 1 - -y E p2. 
We require y reduced, and not a square (mod 4), so this gives: 

(i) / Ee P, y E ((213), (322)), 
(ii) 18 E Q, y = (u, v, w) with u + v + w =1 (mod 4) or -y E ((122), (010), (320), 

(131)). 
For every possible -y listed above, we also include every y' - y from Table I; for 
example, with (213) we also have (110) and (303). This set of -y is a complete set 
satisfying the stated requirements (Corollary 5.3). 

From Theorem 5.1, if -y is reduced and -y -0 (mod 2), then a match for -y is 
/2 = 22. The only way such a y can be reduced is if it has the form 2(x, y, z) where 
N(x, y, z) is odd. We have considered all possibilities and the results are listed in 
Table V. 

There remains the problem of finding a reduced form -y' (mod 4) for some given -y 
which is not reduced relative to 2. We shall assume first that -y Z 0 (mod 2). In Table 
II, we give the result (x, y, z) of multiplying -y E P by (111) and dividing through by 
two. Each -y gives rise to two possible (x, y, z); where -y is already reduced, one of 
them has norm congruent to 1 (mod 4) and the other to 3 (mod 4). Where -y is not 
reduced, one of the (x, y, z) is reduced, and the other is not. Now if N(-y) = 2'x, 
and if -y - y' where -y' is reduced, then N(-y') -2 (mod 4) if j is odd, and N(y') _ x 
(mod 4) if j is even. Thus we can "chase the table" to a unique result, for -y E P, 
-y z 0 (mod 2). (We give an example later.) 

Unfortunately, for -y E Q, the " table approach" does not work unless N(-y) = 4jx, 
x odd, j odd. Of course, we can construct a table, using the multiplier (110) (Table 
III) but the result is four possibilities for (x, y, z); in case j is even, we have found 
no simple way to distinguish these in general. We get around the problem by using 
the adjoint (described earlier). This works equally well whetherj is even or odd; here 
we assumej even. Let y = (u, v, w) so that 

u -w -v + 2w 
-y G=- v u -2w? 

w v-2w u-2v+4w 

We have N(-y) = 4Jx and y E Q. It is shown in [3] that the Smith form S of G has 
the form 

1 0 0 
S= 0 2iy 0), 

0 0 2jz 

where y I z and yz = x (indeed, every y E Q, y Z 0 (mod 2), must have such a Smith 
form and conversely). The Smith form SI of adj G is then 

yO 0 1 
S1 = 2J O z 0. 

0 0 2jx 
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That is, adj G = 2jB, where B is an integral and B Z 0 (mod 2). We have B <-4 (a, b, c) 
and (a, b, c) E P, (a, b, c) Z (000) (mod 2). We have 

(uvw).2j(abc) 4'x, 

(u, v, w)- (xa, xb, xc) = 2jX2. 

Since j is even, we have (u, v, w) - (xa, xb, xc); since x is odd, this is well-de- 
termined modulo 4. Finally, since (xa, xb, xc) E P, we can use Table II. 

Now suppose y = 2yl, where yl z 0 (mod 2), and N(-y7) = 2tx (x odd). If Yl e P 
and t is even, or if yl E Q and t 0 (mod 4), then we have 7y 2y' where N(y') is 
odd, and 26 11 m from Table V. We now suppose that either yl E P and t is odd, or 

7Y e Qandt-2(mod4). 
If yl E P, we use Table II to find y2: 

72 = .1 E 3t/2t. 

(Since t is odd, we do not have yl 7 y2; note that N(y2) will be odd.) Now compute 
73, using Table IV: 

73--Y2 X (111) (mod4). 

Then 2yl X P t+1/2t?+1 y 3, where y3 is reduced, and we use Table V to find m. 
If yl E Q, we use the procedure described previously to find a y' - Y, with 

y' E P, and then proceed as above. 
Example (a). Let y 5 + 7a + 4a2. Then y (130) (mod 4), 7yE P, y is not 

reduced. We find N(y) = 388=4 97, so we know: y- (11)/2 is reduced and 

7y (111)2/4 must have odd norm, congruent to 1 (mod 4). This gives the sequence 

130 - 101 3 E (110) > 3. (010). 

Since (030) is not in Table V, a match for this is /32 = 22. Since (030) has odd norm, 
we have 26 11 m. 

Example (b). Let y = 9 + 5a + 3a 2. Then N(y) = 45, and we can use Table III. 
The sequence is (each arrow represents a single application of the multiplier (110)) 

113 -- 331 -- 113 -4 331 = 3- (113) -- 333. 

We use here the fact that, in Table III, the entries (111), (133), (313) are all 
equivalent mod - . Then from Table V, 26 11 m. 

Example (c). Let y = 5 + 5a + 3a2: N(y) = 24 17. We have 

~5 -3 1 8 5 1- 
G= [ 5 -3 adjG=4 -11 8 5 

-3 -1 7 -5 -1 10- 

Then (5,5,3) (8, -11, -5) = 4 - 17; since 17 1 (mod4), 

(5,5,3) - 17. (8,-11,-5)-(8,-11,-5)-(0,1,3) (mod4). 

Since I adj G I = I G 12 = 2 8 _172, we know that N(8, -11, -5) = 4 172. Then from 
Table II, 

013 - 112 -* 321 - 3 - (132) 3 - (032). 

Then -y - y', where y' (012) (mod 4). From Table V, 22 11 m. 
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Example (d). Let yl = 8 + 3a + a2, y = 2yl. We find N(yl) = 25 X 13, and we 
have the sequence: 

(031) - 3 X (112) -- 3 X (130) -- 3 X (112) 
3 X (130) -- (303) -- (232) - (120). 

Here, yl (031) and Y2 (232). Then y3 (111) X (120) = (333). From Table V, 
2% m. 

Appendix 1 

Let Z = 8y + 1, and co = (1 + VZ)/2. We denote n + mw by (n, m); in all these 
tables, n, m are reduced modulo 4. R is the set of integers in Q(VZ). Tables Ia and 
lb give the multiplication in R/(4), for the two cases y even and y odd, for values of 
(n, m) E (0,0) (mod 2). Table II gives N(n + mc), reduced modulo 4. For Table 
III: given (n, m) E (0, 0) (mod 2), where N(n + mco) is even. Choose /3 in R so that 
N(/3) = 2b, b 1 (mod4) and -3(n + mw) = 2(a + bw). Write N(n + m) = 

2Jx, x odd. Then Table III gives the values of (a, b) modulo 4. For Table IV, we 
have X = 2(n + mc) where N(n + mco) = 2x, x odd. Choose /3 as for Table III; 
X._ 2 = 4(a + bc); we give the values of (a, b) (mod 4). 

TABLE Ia (y even) 

10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 

10 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 

20 00 20 02 22 02 22 00 20 00 20 02 22 02 22 

30 10 03 33 23 13 02 32 22 12 01 31 21 11 

01 01 02 03 00 02 03 00 01 03 00 01 02 

11 13 20 31 00 11 22 33 02 13 20 31 

21 01 22 02 23 00 21 01 22 03 20 

31 13 00 31 22 13 00 31 22 13 

02 00 02 00 02 02 00 02 00 

12 10 22 30 01 13 21 33 

22 00 22 00 22 00 22 

32 10 03 31 23 11 

03 01 00 03 02 

13 13 22 31 

23 01 20 

33 _ ___ __ _ __ _13 
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TABLE lb (y odd) 

10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 

10 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 

20 00 20 02 22 02 22 00 20 00 20 02 22 02 22 

30 10 03 33 23 13 02 32 22 12 01 31 21 11 

01 21 22 23 20 02 03 00 01 23 20 21 22 

11 33 00 11 00 11 22 33 22 33 00 11 

21 21 02 02 23 00 21 21 02 23 00 

31 33 00 31 22 13 20 11 02 33 

02 00 02 00 02 02 00 02 00 

12 = ______ 10 22 30 01 13 21 33 

22 00 22 00 22 00 22 

32 10 03 31 23 11 

03 21 20 23 22 

13 33 102 11- 

23 21 00 

33 _ _ __ _33 

TABLE II 

Z = 8y + 1 

N(n + mw ) r (mod 4), (n, m) reduced mod 4, not both even. 

(n, m) r (y even) r (y odd) 
(1, 1) 2 0 
(3,3) 2 0 
(1,3) 0 2 
(3,1) 0 2 
(2,1) 2 0 
(2,3) 2 0 
(0, 1) 0 2 
(0,3) 0 2 
(1,0) 1 1 
(3,O) 1 1 
(1,2) 3 3 
(3,2) 3 3 
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TABLE III 

y even 
j>l j=l 

(n, m) j = 2 j> 2 (n, m) X 1(4) X 3(4) 

(1,3) (3,3) (3,1) (1,1) (3,0) (3,2) 
(3,I1) (1, 1) (1, 3) (3, 3) (1, O) (1, 2) 
(0, 1) (2,3) (0, 1) (2,1) (3,O) (1,2) 
(0,3) (2,1) (0,3) (2,3) (1, 0) (3,2) 

y odd 
j> l j=l___ _ _ _ __ _ _ _ 

(n, m) j = 2 j > 2 (n, m) X-1(4) X 3(4) 

(1, 1) (3,I) (3' 3) (1, 3) (1, 0) (1, 2) 
(3,3) (1,3) (1, 1) (3,1) (3,0) (3,2) 
(2,1) (0,3) (2,1) (0, 1) (3,0) (1,2) 
(2,3) (0, 1) (2,3) (0,3) (1, 0) (3,2) 

TABLE IV 

For these tables: U = 2(n + mw) where N(n + mci) 2x, x 
odd. Let /3 = X + 2 if y is even, n and m odd; /3 = c + 1 if y 
is even, n even, m odd; /3 = if y is odd, n and m odd; and 
/3 w =-1 if y is odd, n even, m odd. Then(/32/4)U = a + bw. 

y even 
x-1 (mod 4) x = 3 (mod4) 

l(n, m) (a, b) (n, m) (a, b) 
(1, 1) (2,3) (1, 1) (2,1) 
(3,3) (2,1) (3,3) (2,3) 
(2,1) (3,3) (2,1) (1, 1) 
(2,3) (1, 1) (2,3) (3,3) 

y odd 
x-1 (mod 4) x = 3 (mod4) 

(n, m) (a, b) (n, m) (a, b) 
(1,3) (0, 1) (1,3) (0,3) 
(3,1) (0,3) (3,1) (0, 1) 
(0, 1) (1,3) (0, 1) (3,1) 
(0,3) (3,1) (0,3) (1,3) 
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TABLE V 

(a) Z 2 (mod 4) 

Exact power of 2 
n m dividing disc S 

odd even n + m 1 (mod4) 26 

odd even n + m-3 (mod4) 28 

odd odd 210 

even odd 211 

(b) Z 3 (mod 4) 

Exact power of 2 
n m dividing disc S 

odd 4j 24 

odd 4j + 2 26 

even odd 28 
odd odd 29 

(c) Z=-5(mod16) 

Exact power of 2 

n m dividing disc S 

4k+ 1 4j 21discS 
4k+ 1 4j+ 1 
4k+ 2 4j+ 3 

all others with n, m not 
both even 24 

2k 2j j, k not both even 26 

(d) Z_13(mod16) 

Exact power of 2 

n m dividing disc S 
4k + 1 4j 
4k+3 4j+1 2ldiscS 
4k 4j + 3 

all others with n, m not 
both even 24 

2k 2j j,knotbotheven 26 
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(e) Z=8y+1 

n m Exact power of 2 
dividing disc S 

4k+1 4] 2ldisc S 
4k + 3 4? + 2 22 
4k+ 1 4j+2 22 
4k + 3 4] 24 

2k 4j + 1 (k-y odd) 25 

2k + 1 4j + 3 (k-y odd) 25 

2k 4j+1(k-yeven) 23 

2k + 1 4j + 3 (k-y even) 23 

4k + 2 4j 26 

Appendix 2 

TABLE I 

For this table, (2) = PIP2 P3 in R, U= e a_p2 b 2 

f _ p32, C _ p22p32, gp 2p22, d -p p2p32 . 

e a b c d f g 0 

e e a b c d f g 0 
a a g 0 d d g 0 

b b c 0 c g 0 
C C 0 c 0 0 

d d d 0 0 

f 1 0 0 

g g 0 

0 0 

TABLE II 

For this table, (2) - PQ in R where Q has degree 2. 

Then U {e, a, b}; f, c, d -p2 and g - Q2. 

e a b c d f g 0 

e e a b c d f g 0 
a b e f c d g 0 
b a d f c g 0 
c d f c 0 0 

d c d 0 0 

f 1 0 0 
g g 0 

0 0 
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TABLE III 

For this table, (2) pQ2 inR; U= {e, g},a- ' Q2, b -Q4, 

c, d -p2,f _ p2Q2. 

e a b c d f g 0 

e e a b c d f g 0 
a b b f f 0 a 0 
b b 0 0 0 b 0 
c d c f d 0 

d d f c 0 

1 0 f 0 
g e 0 
o o 

TABLE IV 

For this table, (2) = P3 in R; U={e, c, d, g}; a,f p2 and b - P4. 

e a b c d f g 0 

e e a b c d f g 0 
a b 0 f a b f 0 

b 0 b b 0 b 0 
c d g a e 0 

d e f c 0 

f b a 0 
g d 0 
o 0 

Appendix 3 

TABLE I 

The first column is /3 (abc); the second column is /3. (010)2, 
the third is /3. (010)4, the last column gives N(,/) modulo 4. 
All entries are given modulo 4. 

/ 
/a32 /a4 N(/) 

100 001 230 1 
102 021 030 1 
120 201 232 1 
122 221 032 1 
110 303 213 2 
112 323 013 0 
130 103 211 0 
132 123 011 2 
111 133 313 0 
131 333 311 0 
113 113 113 0 
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TABLE II TABLE III 

I *(111)/2 = (xyz) /3*(110)/2 = (xyz) 

/A xyz A3 xyz 
110 010,232 111 010,032,212,230 
112 103,321 131 021,003,223,201 
130 323,101 113 111,133,313,331 
132 012,230 

TABLE IV 

X 110 112 130 132 111 131 113 

102 312 310 332 330 333 313 331 
120 132 130 112 110 333 313 331 
122 330 332 310 312 111 131 113 

TABLE V 

We list those y (modulo 4) such that (a) y is reduced relative 
to 2, and (b) y has a match /32 with /3 E 0 (mod 2). For each y 
we give the corresponding /3, and the power of 2 dividing 
N(/2y). 

Y /3 N(#2 y) 
100,001,230 1 odd 
213,110,303 (110) 23 
322,223,012 22 
131,333,311 (111) 26 

122,221,032, 
320,203,212, (111) 24 

010,023,302 

If y is reduced and not listed above, then a match for -y is /32 22. 
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